Cómo eliminar la última columna de datos de un dataframe de pandas

Tengo algunos datos cvs que tienen una columna vacía al final de cada fila. Me gustaría dejarlo fuera de la importación o borrarlo alternativamente después de la importación. Mis datos cvs tienen un número variable de columnas. He intentado usar df.tail() , pero no he podido elegir la última columna con él.

 employment=pd.read_csv('./data/spanish/employment1976-1987thousands.csv',index_col=0,header=[7,8],encoding='latin-1') 

Datos:

 4.- Resultados provinciales Encuesta de Población Activa. Principales Resultados Activos por provincia y grupo de edad (4). Unidades:miles de personas ,Álava,,,,Albacete,,,,Alicante,,,,Almería,,,,Asturias,,,,Ávila,,,,Badajoz,,,,Balears (Illes),,,,Barcelona,,,,Burgos,,,,Cáceres,,,,Cádiz,,,,Cantabria,,,,Castellón de la Plana,,,,Ciudad Real,,,,cordova,,,,Coruña (A),,,,Cuenca,,,,Girona,,,,Granada,,,,Guadalajara,,,,Guipúzcoa,,,,Huelva,,,,Huesca,,,,Jaén,,,,León,,,,Lleida,,,,Lugo,,,,Madrid,,,,Málaga,,,,Murcia,,,,Navarra,,,,Orense,,,,Palencia,,,,Palmas (Las),,,,Pontevedra,,,,Rioja (La),,,,Salamanca,,,,Santa Cruz de Tenerife,,,,Segovia,,,,Sevilla,,,,Soria,,,,Tarragona,,,,Teruel,,,,Toledo,,,,Valencia,,,,Valladolid,,,,Vizcaya,,,,Zamora,,,,Zaragoza,,,,Ceuta y Melilla,,,, ,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años,de 16 a 19 años,de 20 a 24 años,de 25 a 54 años,de 55 y más años, 1976TIII,"8.9","11.6","60.4","11.8","16.4","14.4","65.2","14.9","47.9","49.9","246.0","60.1","20.5","14.3","88.9","11.2","34.5","42.5","278.0","91.3","6.6","7.2","41.5","13.3","25.3","22.8","135.3","37.5","19.8","24.4","153.0","43.0","166.8","203.7","1079.0","230.7","14.1","16.4","86.0","23.8","17.0","18.3","86.6","28.6","31.0","38.7","180.4","29.8","15.3","19.2","120.6","30.4","19.9","15.3","104.2","23.4","19.7","19.5","97.5","29.7","28.0","23.9","140.5","30.1","29.1","46.1","263.8","70.0","8.9","6.2","45.7","14.6","19.7","19.7","123.0","35.3","26.8","22.5","141.0","36.2","4.8","6.0","33.1","13.4","23.1","31.6","174.5","33.8","11.9","14.3","83.8","18.8","7.0","9.3","50.3","20.0","22.4","23.4","125.8","28.6","22.7","21.6","143.1","50.9","12.5","13.7","89.5","33.2","14.3","14.7","134.0","54.7","136.6","207.5","1067.6","218.6","34.7","41.1","196.4","38.4","37.2","35.0","200.5","46.1","15.6","23.8","111.6","30.7","14.0","16.8","120.2","74.9","5.7","6.4","39.2","8.0","24.5","25.6","135.3","27.1","36.4","39.4","246.1","74.0","10.2","11.3","63.9","13.4","10.5","11.0","74.1","19.6","19.3","23.9","140.3","31.7","5.5","6.0","35.6","11.3","55.2","55.6","262.5","68.1","3.1","3.2","24.4","5.4","21.8","18.4","116.7","37.1","4.6","3.4","37.3","12.0","20.3","16.7","102.2","23.1","73.5","85.5","454.6","101.5","19.2","23.4","90.7","20.5","41.3","54.7","272.2","57.0","6.0","7.1","56.5","28.9","29.2","32.1","192.7","49.8","0.0","0.0","0.0","0.0", 1976TIV,"8.7","11.7","60.8","11.4","14.4","13.6","63.3","14.5","49.1","50.6","244.9","54.2","19.0","16.9","86.8","11.4","33.2","42.3","271.8","86.0","5.8","7.5","40.3","13.9","25.1","24.7","132.7","38.4","18.8","23.4","151.8","43.9","172.2","201.7","1070.7","228.1","11.1","15.7","82.5","21.1","16.4","18.0","89.2","26.6","32.6","40.0","176.5","30.5","15.8","18.1","121.3","30.2","19.0","17.3","106.3","24.1","19.9","19.0","101.7","26.9","25.3","22.3","142.7","28.9","30.0","42.4","267.6","70.1","7.3","7.0","44.4","13.0","17.8","21.4","122.8","34.0","28.4","21.6","140.5","36.8","4.7","6.6","32.6","10.8","24.8","32.7","177.2","32.3","11.9","12.5","85.4","20.5","6.9","8.5","48.8","19.9","22.4","22.1","127.6","25.1","18.5","21.1","137.8","48.7","12.4","11.1","84.9","31.5","13.6","15.6","132.7","52.0","144.0","202.3","1054.0","222.5","35.6","40.1","194.1","37.5","36.7","34.7","203.8","47.1","15.6","23.6","114.3","31.3","14.0","15.9","118.3","76.7","5.5","7.3","36.9","9.3","25.5","25.1","138.7","26.8","34.8","42.9","250.3","74.9","9.9","11.8","62.8","14.0","10.0","13.2","74.5","19.2","19.5","24.2","142.7","31.0","4.0","5.9","35.5","12.0","55.0","56.7","264.7","63.3","2.8","3.5","23.9","5.1","20.0","21.6","116.4","34.9","4.5","3.7","36.5","12.1","21.1","17.6","100.6","25.7","74.6","87.5","455.5","102.1","18.9","22.9","90.0","21.6","40.2","57.1","273.9","58.5","5.6","8.3","57.6","23.9","28.3","31.4","192.2","46.4","0.0","0.0","0.0","0.0", 1977TI,"9.2","11.8","59.9","11.2","14.2","13.2","65.9","14.7","48.2","50.4","251.1","50.8","17.8","15.4","86.5","11.8","30.6","42.9","272.6","84.1","5.8","7.4","37.2","12.8","24.1","22.8","131.3","38.2","17.8","23.5","151.1","42.5","168.1","200.4","1077.2","223.3","11.6","12.8","80.9","17.6","14.4","16.4","88.2","23.9","34.5","37.5","176.3","30.8","15.2","19.7","121.3","31.6","18.4","19.4","107.4","24.7","20.0","18.1","98.3","26.6","24.9","23.6","150.7","27.5","29.5","40.3","267.4","70.5","5.6","7.5","44.2","12.8","17.1","21.1","122.8","33.6","29.6","23.3","142.1","37.9","4.6","5.5","33.7","11.2","23.5","30.4","175.2","32.8","12.0","12.7","84.8","21.3","7.3","9.3","46.6","17.8","30.2","26.0","147.1","25.2","15.9","22.7","133.2","45.1","12.8","12.1","84.3","28.0","12.4","16.5","131.2","55.6","150.9","202.9","1065.4","223.7","36.6","44.0","194.3","39.9","36.7","31.5","196.7","45.7","14.8","22.5","115.1","29.4","11.7","17.2","114.2","75.8","5.0","7.7","38.0","9.4","24.0","26.8","143.5","27.0","35.3","43.0","247.4","73.5","9.7","12.1","61.6","13.3","9.5","11.9","73.9","18.9","20.4","26.7","143.0","31.6","4.0","5.0","35.5","12.3","52.3","58.0","266.0","62.5","2.6","2.7","24.2","6.0","17.3","21.0","113.0","33.3","4.5","5.2","33.8","10.6","18.7","18.8","98.3","24.8","77.4","87.6","446.6","100.3","20.5","23.4","90.2","20.4","38.7","50.7","277.6","57.3","6.4","8.7","60.1","21.5","28.6","31.0","194.8","45.7","0.0","0.0","0.0","0.0", 

Puede especificar qué columnas para importar usando el parámetro read_csv para read_csv

Entonces crea una lista de nombres de columnas o valores enteros:

 cols_to_use = ['col1', 'col2'] # or [0,1,2,3] df = pd.read_csv('mycsv.csv', usecols= cols_to_use) 

o elimine la columna después de la importación, prefiero el método anterior (¿por qué importar datos que no le interesan?).

 df = df.drop(labels='column_to_delete', axis=1) # axis 1 drops columns, 0 will drop rows that match index value in labels 

Tenga en cuenta que también entiende mal lo que hace la tail , devuelve las últimas n filas (el valor predeterminado es 5) de un dataframe.

Adicional

Si las columnas tienen una longitud variable, entonces puede simplemente el encabezado para obtener las columnas y luego leer el csv de nuevo correctamente y soltar la última columna:

 def df_from_csv(path): df = read_csv(path, nrows=1) # read just first line for columns columns = df.columns.tolist() # get the columns cols_to_use = columns[:len(columns)-1] # drop the last one df = read_csv(path, usecols=cols_to_use) return df 

Aquí hay una sola línea que no requiere especificar el nombre de la columna

 df.drop(df.columns[len(df.columns)-1], axis=1, inplace=True) 

Otro método para eliminar la última columna en DataFrame df:

df = df.iloc[:, :-1]

Mejorar desde @ conner.xyz la respuesta anterior:

df.drop(df.columns[[-1,]], axis=1, inplace=True)

Si desea eliminar las dos últimas columnas, reemplace [-1,] por [-1, -2] .

Otra forma de eliminar la última columna:

 df = df[df.columns[:-1]] 

Después de importar los datos, puede eliminar la última columna, sea cual sea, con:

 employment = employment.drop(columns = [employment.columns[-1]])